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INSA Rouen

INSA Hauts-de-France

INSA Rennes

INSA Strasbourg

INSA Lyon

INSA Toulouse

INSA Centre Val de Loire

OUR GROUP 

▸ ENSCI Limoges

▸ ISIS Castres

▸ ENSCMu Mulhouse

▸ ENSISA Sud Alsace

▸ ESITECH Rouen

▸ SUP’ENR UPVD Perpignan

7 INSAS IN FRANCE 6 PARTNER INSA SCHOOLS

▸ Centre Val de Loire

▸ Lyon

▸ Rennes

▸ Rouen

▸ Strasbourg 

▸ Toulouse

▸ Valenciennes

ENSIAME 
Valenciennes

ENSCI  Limoges

ESIS  Castres

ENSCMu Mulhouse

ENSISA Sud Alsace

ESITECH Rouen

SUP’ENR UPVD Perpignan

INSA EURO-MÉDITERRANÉE

Fès I Maroc

1 INTERNATIONAL

▸ INSA Euro-Méditerranée/UEMF
Fès (Morocco)

Closed in 2003

Identification of a new site for INSA 

Morocco in progress…..

In September 2023, 

Inauguration of the First 

Engineering Training Cycle in 

Martinique
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OUR GROUP

In figures (excl. INSA partners) …

▸ 22 179 students, incl. 433 architects and 162 landscape 
architects

▸ 3 334 engineers, 57 architects et 23 landscape architects 
qualify every year

▸ 1 354 PhD Students, 292 thesis last year, 60 research 
laboratories 

▸ 34,7 % females students

▸ 30,4 % students with state grants

▸ + 300 agreements with partner universities abroad

▸ 18% international students welcomed in first year of 
curriculum 

▸ 4,649 overseas students 

▸ 369 M€ consolidated budget
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STUDENT NUMBERS

▸ 214 first-year students (post-high school)

▸ 1 577 engineering students, including 
347 apprentices 

▸ 433 architecture students including 387
students following the dual engineering and
architecture course

▸ 75 in a master program 
▸ 49 in a specialist master’s in eco-consultancy in partnership with 

the Institut Éco-conseil, accredited by the Conference des 
grandes écoles

▸ GENDER EQUALITY  35% / 65% :This figure is an average, with 
proportions of female students varying considerably between specialtie

▸ Students with state grants : 35%

2,015 STUDENTS, including 

OUR GRADUATES

© Véronique Zeller

GRADUATES (2021)

340 engineer
57 architects
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OUR COURSES

(*) also available as apprenticeship programmes in partnership with ITII                  (**) also available as apprenticeship programmes in partnerhip with CIRFAP

Architecture training ▸ Civil engineering

▸ Surveying engineering

▸ HVAC and energy engineering*

▸ Electrical engineering*

▸ Mechanical engineering*

▸ Mechatronics*

▸ Plastics engineering**

Seven specialist engineering courses

A specialist master's

Co-supervised and partnership master's courses

© Klaus Stoeber © Klaus Stoeber© Klaus Stoeber © Tania Landes© Tania Landes
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OUR STAFF ▸ A permanent teaching staff of 117, 
including 

- 83 lecturer/researchers 

- 34 other lecturers

▸ Over 300 part-time or non-tenured 
lecturers

▸ 122 permanent administrative and 
technical staff and about thirty 
contract staff

OUR BUDGET ▸ Revenue: €21.9m 
(incl. 76% from the State)

▸ Expenditure: €21.0m 
(incl. 78% staff costs)

▸ 60% training, 20% research, 
11% property, 9% management

© Klaus Stoeber
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ICUBE LABORATORY

The ICube laboratory

+ 59 M€  budget

Under the supervision of 5 
establishments

692 members

+ 200 patents

UMR 7357

Born January 1, 2013
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ICube is since 01/01/2013:

▪ a research laboratory in the Engineering, Computing and Imaging sciences with 
biomedical engineering, environment and sustainable development as privileged sectors.

▪ a joint research unit (UMR7357) of university of Strasbourg, CNRS, ENGEES and INSA 
Strasbourg. 

ICUBE, A MULTIDISCIPLINARY LABORATORY
A MAJOR DRIVING FORCE FOR RESEARCH IN STRASBOURG (> 632 PEOPLE)

Engineering

Imaging

Computing

▪ with as privileged partners:
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ICUBE, A MULTI-SITE LAB
8 SITES

ICube

Pavillon Clovis Vincent

CRB

S

IHU
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7 HARDWARE AND SOFTWARE PLATFORMS
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CONTEXT AND SCIENTIFIC STAKES

Energy Storage Systems: Challenges and Innovations

The Critical Role of Energy Storage

Integration

Storage systems enable 

seamless integration of 

intermittent renewable 

energy sources into existing 

power grids.

Electrification

They power electric 

vehicles and off-grid 

applications that reduce 

fossil fuel dependence.

Grid Stability

Energy storage provides 

critical balancing 

services during peak 

demand periods.

Global Energy Storage Landscape

Key Statistics (2023):

• 14 million new electric cars sold globally, 18% of total car sales (1 in 5 cars sold).

• 40 million EVs on roads globally, with 70% being battery electric vehicles (BEVs).

• 35% YoY growth (vs. 2022), 6x higher than 2018 levels.

• China: Dominant market, ~60% of global EV sales.
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CONTEXT AND SCIENTIFIC STAKES

Energy Storage Systems: Challenges and Innovations

Current Challenges

1
Safety Concerns
Thermal runaway risks

2
Limited Efficiency
Energy loss during conversion

3
Battery Degradation
Capacity fade over time

4
Sustainability Issues
Resource-intensive production

These challenges create significant barriers to widespread adoption. They impact cost-effectiveness and reliability 

across applications.
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CONTEXT AND SCIENTIFIC STAKES

Energy Storage Systems: Challenges and Innovations

Smart Battery Solutions

Real-time Monitoring

Advanced sensors track temperature, voltage, and degradation patterns continuously.

AI Diagnostics

Machine learning algorithms detect anomalies before they cause failures (Generative AI and LLM).

Predictive Maintenance

Systems forecast maintenance needs to prevent unexpected downtime.

Adaptive Management

Operating parameters adjust automatically to extend battery life.
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THE ROLE OF THE BATTERY MANAGEMENT SYSTEM (BMS)

The Battery Management System serves as the essential control layer in Large-Scale Battery Energy Storage Systems (BESS), ensuring safe 

operation, optimal performance, and extended lifecycle management.

Safety & Protection

Continuous monitoring of voltage, current, temperature, and 

pressure prevents critical safety events including overcharge, short-

circuit, and thermal runaway through intelligent alarm handling and 

safe-shutdown strategies.

Lifecycle Management

Advanced estimation of key health indicators—State of Charge 

(SoC), State of Health (SoH), and State of Energy (SoE)—while 

tracking aging, cycling patterns, and degradation over time.

Operational Optimization

Intelligent cell balancing (active or passive), sophisticated thermal 

management, and seamless communication with inverter, EMS, and 

SCADA systems ensure peak performance.

Digital Interface

Reliable data acquisition and logging with local or cloud-based 

transfer capabilities provide partial traceability across the entire 

battery lifecycle for informed decision-making.
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ADVANCED BMS WITH AI

Next-generation capabilities powered by artificial intelligence transform grid-scale Battery Energy Storage Systems, delivering predictive 

intelligence, optimization, and unprecedented transparency.

1

Predictive Intelligence

Machine learning enables accurate prediction of State of Health 

(SoH) and Remaining Useful Life (RUL), early anomaly and fault 

detection, plus fast, robust SoC estimation even under highly 

dynamic operating conditions.

2

Intelligent Energy Optimization

AI-driven dynamic charge and discharge dispatch, degradation-

aware optimization strategies to extend battery lifespan, and 

sophisticated multi-asset coordination across hybrid systems 

including battery, hydrogen, supercapacitors, and renewables.

3

Explainable AI: Building Trust

Transparent, operator-readable explanations using feature 

importance and SHAP analysis justify why the BMS limits current, 

triggers alerts, or adjusts operation modes—critical for grid 

operators, insurers, and regulators.

4

Enhanced Traceability & Digital Passports

Automated, enriched data enables digital battery passport 

compliance with full lifecycle history including performance 

metrics, usage patterns, repairs, and environmental data—enabling 

circularity through second life, reuse, and recycling initiatives.
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STATE INDICATORS FOR BMS

Battery capacity diagram

• State of Charge (SOC): Remaining usable energy

• State of Health (SOH): Decrease in total capacity

• Internal Resistance (IR): Increases over time due to 

aging, induces lower power performance

Aging mechanisms

Calendar 

aging (storage-

related 

degradation)

Cycle aging 

(charge/discharge-

related degradation)

Lost 

Capacity

Residual 

Capacity

Used 

Energy

Residual 

Energy

• SOC, SOH, and RUL (Remaining Useful Life) assessment 

→ optimized use and longer battery lifespan
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DATA-DRIVEN VS. PHYSICS-BASED BATTERY MODELS

19

Criterion Data-driven Models Multi-physics Models

Principle Learn patterns from historical data
Use coupled electrochemical, electrical 

and thermal equations

Data Needs High: large and diverse datasets
Low to moderate: need accurate 

physical parameters

Generalization Limited to training distribution
Strong: based on physical laws, can 

extrapolate to new conditions

Explainability Low: “black box”
High: each parameter has physical 

meaning

Computation Low at inference, training can be heavy
High: solving coupled PDEs can be 

computationally intensive

Deployment Easy to integrate in a BMS Difficult for real-time deployment

Best Use
Fast prediction, fleet analytics, anomaly 

detection

Understanding degradation 

mechanisms, battery design, safety 

validation



Modeling and Data : Multi-physics and Data-driven Modeling

→ Multi-physics Modeling with Cell Behavior Approach

➔Component vision and technological

mastery

Source Hybridization
Source hybridization plays a key role in 

optimizing energy systems for enhanced 

performance and efficiency of EVs

Technologies and Sizing 
Technologies and sizing of energy storage 

systems are crucial factors in ensuring 

efficient and sustainable solutions

Energy and Thermal Management
Effective energy and thermal management 

is crucial for maximizing the performance 

and longevity of energy systems

Lifetime and Total Cost of Ownership 
Considering the lifetime and TCO is 

essential for evaluating the long-term 

sustainability and economic viability of 

energy systems

➔System Vision and Overall Performance Optimization

RESEARCH ACTIVITIES
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Modeling and Data : Electric models (Thesis of Yasser GHOULAM - 2019-2023 & project VEHICLE)

→ Dual Polarization  Equivalent Circuit  Battery Model with Two  RC  Branches

Electric model and BMW I8 battery tests 

Bath University -IAAPS (Pack bat 18Ah 400V)

Dual  polarization  equivalent  circuit  model

Validation with  drive cycle data of a hybrid 

vehicle (NEDC)

NEDC: Voltage curves (Expe _model)

Validation with  drive cycle data of a hybrid 

vehicle (WLTC)

1 PhD (40%)
1PRT

1 int. papers

3 int. conf.

project 
VEHICLE

HrT, IAAPS
Bath. Univ

WLTC: Voltage curves (expe _model)

NEDC input current profile WLTC input current profile 

<2%

<3%

RESEARCH ACTIVITIES
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Modeling and Data : Thermal models (Rocio SUGRANES’s Internship - 2017 & project VEHICLE)

→ Multi-node Thermal Model (The battery is divided into n×m nodes with two dimensions) 

Thermal model and  NMC batteries tests Validation with NMC batteries tests 1 Master

1 int. papers

// int. conf.

Multi-node thermal model of battery cell [Chenet al.2016]

Positive potential distribution (SoC 85%)

Current density distribution SoC 85%40 Ah NMC battery cell (Kokam) [-20 -60 °C] 

Validation with NMC batteries tests

CC-CV & Artemis input current profile 

Temperature evolution

Temperature distribution (SoC 85%)

project 
VEHICLE

L2EP, ICube
Univ.Str

Negative potential distribution (SoC 85%)

RESEARCH ACTIVITIES
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Modeling and Data : Aging models (Franck BOUTOILLE’s Internship - 2017& project VEHICLE)

→ Semi-empirical model of Li-ion battery aging  (Calendar and cycling aging) 

Aging model and  NMC batteries tests Validation with NMC batteries tests (Kokam

40HE + ARTEMIS driving cycle )

1 Master

2 int. papers

// int. conf

project 
VEHICLE

Semi-empirical model battery aging [Schmalstieget al.2014b]  

Validation with NMC batteries tests at BoL & 

EoL

Identification  (PSO / NM) 

<2%

<5%

<1%

<1.5%

Battery tests (BoL)

Battery tests (EoL)

L2EP, ICube
Univ.Str

RESEARCH ACTIVITIES
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Logo

Funded by the European Union. Views and opinions expressed are 
however those of the author(s) only and do not necessarily reflect 
those of the European
Union or CINEA. Neither the European Union nor the granting 
authority can be held responsible for them. N° CONTRACT 
101103667.

NEXT GENERATION BATTERY 
MANAGEMENT SYSTEM BASED 
ON DATA RICH DIGITAL TWIN 

ENERGETIC
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ENERGETIC CONSORTIUM

Partners
1 INSA Strasbourg

INSTITUT NATIONAL DES SCIENCES APPLIQUEES, STRASBOURG - 

COORDINATOR
FR

2 CapGemini ALTRAN PROTOTYPES AUTOMOBILES - BENEFICIARY FR

3 UBFC
COMMUNAUTE D' UNIVERSITES ET ETABLISSEMENTS UNIVERSITE 

BOURGOGNE - FRANCHE - COMTE - UBFC - BENEFICIARY
FR

3.1 FEMTO-ST
UNIVERSITE DE TECHNOLOGIE DE BELFORT -

MONTBELIARD
FR

4 SnT UNIVERSITE DU LUXEMBOURG - uni.lu - BENEFICIARY LU

5 EDF ELECTRICITE DE FRANCE - EDF - BENEFICIARY FR

6 ZABALA GBA ZABALA CONSEIL EN INNOVATION SA - BENEFICIARY FR

7 HKA HOCHSCHULE KARLSRUHE - BENEFICIARY DE

8 THIL TAJFUN HIL LIMITED LIABILITY COMPANY, NOVI SAD- BENEFICIARY RS

9 TalTech
TALLINNA TEHNIKAÜLIKOOL - TALLINN UNIVERSITY OF TECHNOLOGY -

BENEFICIARY
EE

10 POWERUP POWERUP - BENEFICIARY FR

11 FORSEEPOWER FORSEE POWER - BENEFICIARY FR

12 BATH UNIVERSITY OF BATH - UBAH - ASSOCIATED PARTNER UK

13 CU COVENTRY UNIVESITY - ASSOCIATED PARTNER UK
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Modeling and Data : Data-driven Modeling (Thesis by Inès JORGE- 2019-2023 & project VEHICLE)

→ Predictive Maintenance of Lithium Batteries in EVs (Data approach) 

Voltage

Current 

Temperature
Neural NetworkTraining data

Explainable model
Understanding Aggravating 

Factors

Knowledge 

based system

SoC, SoH, RuL 

prediction

User Recommendations for 

Extending Battery Life / Available 

Energy

Prognostics and Health 

Management of Lithium Batteries 

• Choice and design of deep learning models.

• Development of Recurrent Neural Network models for SoH and SoC prediction of batteries.

• Models based on battery usage data (Public data, industrial data, laboratory-specific data…)

• Explainability model to understand the aggravating factors impacting battery range and lifetime.

• Utilization of driving data as input in predictive models

User 

Feedback

RESEARCH ACTIVITIES
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WHY BMS NEED EXPLAINABLE AI

Accelerating Deployment
Accelerating EV battery deployment

through advanced fast-charging

technologies, AI-driven BMS, and scalable

gigafactory production. Enhancing

sustainability via circular economy models,

second-life applications, and robust EU

supply chains.

Growing Complexity

Modern energy systems require

integrated optimization across

thermal, electrical, and operational

domains to ensure safety, maximize

performance, and extend service life

under real-world constraints.

Traditional Limits

Conventional BMS approaches rely on deterministic rules and narrow modeling 

assumptions that cannot adapt to dynamic real-world conditions.

Explainable AI provides transparency for operators, enables systematic debugging,

ensures safety compliance, and builds stakeholder trust through interpretable

decision-making.
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WHAT EXPLAINABLE AI MEANS FOR BMS

Transparency & Trust

XAI systems provide clear visibility into how AI models reach 

decisions, enabling operators to understand and validate 

autonomous control actions in real-time.

Debuggability

When systems behave unexpectedly, explainable models allow 

engineers to trace the root cause through interpretable feature 

contributions and decision pathways.

Safety & Compliance

Regulatory bodies and insurers increasingly require auditable 

AI systems. XAI provides the documentation and transparency 

needed for certification and risk assessment.

Risk Reduction

By making AI decisions interpretable, operators can identify 

potential issues before they escalate, improving overall system 

reliability and performance.
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TRANSPARENCY ISSUE IN DEEP LEARNING MODELS

Hidden Layers
Input Output

Black
-box ‘Car’

Explainable 
AI

Lack of 

Transparency

Explanations
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DEFINITIONS OF EXPLAINABILITY AND INTERPRETABILITY

• Explainability: The ability to relate and make understandable the elements 

considered by an AI system in producing a result. (CNIL)

Example: Input variables and their impact on the prediction of a score, and 

consequently on the decision.

• Interpretability: The ability to link physical phenomena accelerating battery aging 

to the explanations provided.

Example: Impact of battery temperature, high charging current, etc.

CNIL: The National Commission for Information

Technology and Freedoms (CNIL) is an independent French

administrative authority.
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DEFINITIONS OF EXPLAINABILITY AND INTERPRETABILITY

• Propose AI-based approaches to predict and explain battery aging in electric mobility

• Understand key factors affecting battery health starting from SOC to SOH to give practical user 

recommendations
32

SOC

SOH 

IR  

Li-ion 

batteries 

aging 

data

Input 

Features 

(I, U, T)

Battery state 

indicators

Extraction and 

pre-processing

Shapley values 

of I, U, T Interpretations:

High Temperature

High C-rate

…
Human Expert 

Knowledge

XAI Methods 

(eXplainable AI)



DATA OVERVIEW – MIT & TOYOTA RESEARCH INSTITUTE (TRI) 

DATASET (SEVERSON ET AL. 2019)

• Designed to study the effects of fast-charging protocols on 

battery lifespan

• 124 commercial LFP (Lithium Iron Phosphate) 18650 cells, 

nominal capacity ~1.1 Ah

• Cells subjected to 72 different fast-charging protocols at 

constant 30 °C

• Measurements: Voltage, current, surface temperature and IR 

over each cycle 

→ Capacity tracked until end-of-life (EOL = 80% of original 

capacity)

Articleshttps://doi.org/10.1038/s41560-019-0356-81Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. 2Department 

of Materials Science and Engineering, Stanford University, Stanford, CA, USA. 3Toyota Research Institute, Los Altos, CA, USA. 4Materials Science Division, 

Lawrence Berkeley National Lab, Berkeley, CA, USA. 5These authors contributed equally: K. A. Severson, P. M. Attia. *e-mail: wchueh@stanford.edu; braatz@mit.edu
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16/12/202534

DATA OVERVIEW – INSA STRASBOURG DATASET

• Characterization cycles on LFP, sodium-ion

Battery Aging Experiment: 

• 18 commercial LFP (same as MIT)

• Two charge types: fast charge (4 A) and recommended 

charge (1.5 A)

• Experiments at three ambient temperatures: 25 °C, 35 °C, 

45 °C

• Each cycle includes 3 WLTP driving cycles for realistic usage 

simulation

• Measurements: voltage, current, surface temperature over 

each cycle

→ Capacity tracked until EOL (SOH = 80%)
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DATA OVERVIEW – INSA STRASBOURG DATASET

•Objective: To analyze the aging behavior of Lithium Iron 

Phosphate (LFP) batteries.

•Batteries: 18 Lithium Werks APR18650 cells

Tested Parameters:

• Temperature: 25°C, 35°C, and 45°C.

• Charging Current: 1.5A (standard) and 4A (fast-charging).

• Discharge : Standardized and pulsed profile

• Charge: CC-CV protocol
35



RESULTS

• Optimization: MAE loss, AdaMax, early stopping (20 epochs)

• Data: ~2.5M samples → 70% training, 15% validation, 15% test
36

SOC estimation during a cycle 

from the MIT dataset

SOC estimation during a cycle 

from the INSA Strasbourg dataset



UNDERSTANDING THE MODEL’S REASONING WITH SHAPLEY VALUES

• Analyze how the model uses the input signals to estimate the SOC. 

• Application of SHAP → computes Shapley values for each input 

→ Visualization of the positive or negative contribution of each signal

Case studies: 4 SOC estimations taken from a real profile (INSA 

Strasbourg)

Scenarios: high power demand and rest phases, at both high and low 

SOC levels.

Time Series of battery 

data

Features extraction: 

TSF

F1

F2

F3

…

Feature selection: 

SFFS

F1

F2

F3

…

SocHAP learning 

model (SOC)

Explainability:

SHAP
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SHAPLEY VALUES ANALYSIS

• Voltage and current are the main determinants of 

SOC during peaks

• Temperature has a limited influence although it is 

physically correlated

• Combines voltage and current to remain independent 

of the initial SOC
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SOCHAP VALIDATION: REGIOLIS HYBRID TRAIN (CAF - CONSTRUCCIONES Y 

AUXILIAR DE FERROCARRILES, EX. ALSTOM-REICHSHOFFEN)

REGIOLIS Hybrid TER 

Train Diagram

• Estimate SOC of energy storage systems (ESS) from real test data provided by CAF (4 round trips in April 2023)

• 4 traction modes: Hybrid Thermal, Zero Emission, Hybrid Electric 1500 V and Electric 25 kV

• Available data: Current, min/max voltage, min/max temperature, SOC

→ Model input window adapted

• Sliding windows of 40 and 80 points to compare impact of historical context

39
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CASE STUDY RESULTS

• Min/max derived signals → reliable SOC estimates

• Shows potential of explainable data-driven models 

for onboard BMS integration

SOC Estimation – Hybrid TER Battery Pack

(Rodez–Toulouse)

Window 

Size

MAE RMSE SMAPE

40 points 0.0141 0.0239 1.99%

80 points 0.0108 0.0188 1.53%
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MULTI-TECHNOLOGY ADAPTATION: LI-ION AND SODIUM-ION

• Tested technologies:

Li-ion (LFP) → MIT & INSA Strasbourg cycles

Sodium-ion → characterization cycles performed 

at INSA Strasbourg

SOC Estimation – LFP Cell 

(MIT Dataset Cycle)

SOC Estimation of a Sodium-Ion Cell

MAE RMSE SMAPE

0.0063 0.0153 3.60%

• Able to accurately estimate SOC for chemistries 

with different electrochemical behaviors

• Limitation: specific retraining is still required for 

each new technology.
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Energy Storage Systems: Challenges and Innovations

Hybrid Energy Storage Systems (HESS)

Load Distribution
Each storage technology handles its optimal load range, reducing stress.

Efficiency Boost
Combined systems achieve higher round-trip efficiency than single 

technologies.

Extended Lifespan
Reduced cycling of batteries can extend system life by 10-30%.

Lower TCO
Total cost of ownership decreases despite higher upfront investment.

A. Shmaryahu et al., “Sizing Procedure for System Hybridization Based 

on Experimental Source Modeling for Electric Vehicles”, Energies, vol. 14, 

no. 17, p. 5275, Aug. 2021, doi: 10.3390/en14175275.

Ragone diagram

Supercapacitors
(Power)

Li-ion Batteries 

HE (Energy)

Hybrid source 

CONTEXT AND SCIENTIFIC STAKES
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SOME EXAMPLES OF RESEARCH ACTIVITIES FOR AUTOMOTIVE 
APPLICATIONS

Hybrid energy storage system (HESS)
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Designing a Long-Endurance Drone with Hydrogen Hybrid Power Sources

➢ Project INTERREG ELCOD (2017-2020) www.elcod.eu
Development of a long-endurance drone with hydrogen fuel

cell propulsion for air pollution measurement

Equipement :

▪ Fuel Cell 1000W

▪ Tank de 6L (300bars max)

▪ BLDC motor 2000W 

▪ MTOW 25Kg, wingspan 5m

Estimated performances :

▪ Autonomy : 5-6h

▪ Two-way range : 250 km
ELCOD : www.elcod.eu

https://youtu.be/AZTw9cO5zvM

INSA-Icube, ICPEES-CNRS, 

Hochschule Offenburg-IUAS

Flight 
controller/elect

ronic

6L tank
Motor 
2000W

PEM FCBatteries Load

45
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Designing a Long-Endurance Drone with Hydrogen Hybrid Power Sources

46

RESEARCH ACTIVITIES



Designing a Long-Endurance Drone with Hydrogen Hybrid Power Sources

Fuel cell and tank 

+ management 

electronics

High 

efficiency 

solar 

panels

Drone Stork MkII :

Same performances as Stork Mk.I

• Maximum mass 25kg, wingspan 5m

• Propulsion based on hydrogen fuel cell

• Payload : 5kg Max

• Autonomy: Range 450km, autonomy 5-6H

• Website : www.elcod.eu

Motivations:
• Decarbonization of the propulsion energy 

of autonomous drones or vehicles.

• Extending the range by optimizing the 

autonomy and intelligent consumption of 

energy.

• Extension of the life span of energy 

sources (fuel cells, super-capacitors, 

lithium-ion batteries)

• Working on bio-composite drone 

structures

• Use case with pollution and 

measurement applications etc..

Photo of the Stork MkI prototype drone
INTERREG ELCOD (2017-2020)
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Moloding

Master

Finishing

Coating

Polishing

Finition des masters

Conceptions steps 

Stork Mk2

Final composit wings

Stork Mk.II drone 

design steps

Context and motivations
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Research Activities

Use case with fire survey and fire pollution measurement

49
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Semi active architecture under 
study

Conventional architecture

B Wang, D Zhao, W Li, Z Wang, Y Huang, Y You, and S Becker. Current technologies and 

challenges of applying fuel cell hybrid propulsion systems in unmanned aerial vehicles. Progress 

in Aerospace Sciences, 116:100620, 2020

Flight 
controller/elect

ronic

6L tank
Motor 
2000W

PEM FCBatteries Load
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Electric hybridization principle

Ragone diagram Semi-active architecture

Propeller

LiPo

FC

ESC Motor

DC-DC

SC DC-DC

I_FC_command

I_SC_comman

d

32V

Objectives : Develop Energy Management 

Strategy (EMS) algorithms to increase sources 

lifetime and flight autonomy by controlling the 

DC/DC converters

Take into account the 

advantages of each source by 

mixing them 
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Drone Stork (16/07/2020)

Absolute flight altitude

Consumed current

flight scenario to validate EMS algorithms on test bench and simulations

B
u

s
 2

7
V

-3
2

V
 D

C

Real current profil

ISC current

Fuel Cell

40V

DC/DC

Input : 40V

Output : 32V

+

-

+

-

+

-

IFC 

Current

+

-

+

-

+

-

SC

0V-16V

DC/DC

Input : 0V-16V

Output : 32V

Batteries
27V-32V

LOAD
BLDC 
motor

BLDC driver

(DC/AC)

PWM Command

• Real flight scenario for driving the test 

bench

• Development of a simulation model (Matlab 

Simulink) for the studies of hybridization 

strategies

Test bench architecture
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Fixed frequency EMS applied in simulation and on the test bench

Principles 

• High frequencies sent to the SC

• Low frequencies sent to FC

• Auxiliary battery only to provide more than 500W if 

required
I_SC_

comman

d

I_FC_

comman

d

I_Load

+-

Low pass 

filter

Frequency EMS principle
Experimental optimum frequency 

0.2rad/s 
Test bench results 
(Load current /3), 

Fc=0.2rad/s
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Innovative adaptive frequency Energy management strategy

Idea

• Vary the cutoff frequency 

according to the SoC (state of 

charge) of the SC.

Advantages

• No need to determine the ideal 

cut-off frequency

• Maximum use of SC charging 

and discharging amplitude 

(SOC)

• Limitation of current variations 

on the FC

I_SC_

command

I_FC_

command

I_Loa

d

+SoC*s

c

Inputs Outputs
*SoC : State of Charge

SoC (%) = Wstock / Wmax

Low pass filter with adaptative cutoff 

frequency 

-
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adaptive frequency strategy

I_SC_comman

d

I_FC_comman

d

I_Load

+
-

+
+

- +

+-

-
+

SoC* 

batt ref 

(90%)

SoC* SC 

(50%)

SoC*_Bat

SoC*_SC

EMS 

Inputs Outputs

*SoC : State of Charge

SoC ( %) = Wstock / Wmax

 *PI : Proportional Integral

Low pass filter

PI*

PI*

I_load - I_FC_command
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Innovative adaptive frequency strategy

Discharge of the SC :

fc 𝑆𝑜𝐶 = 𝐹𝑐𝐻𝑙𝑖𝑚 − 𝐹𝑐𝐿𝑙𝑖𝑚 ⋅ 𝑒−G⋅ 𝑆𝑜𝐶 + 𝐹𝑐𝐿𝑙𝑖𝑚

Charge of the SC :

fc 𝑆𝑜𝐶 = 𝐹𝑐𝐻𝑙𝑖𝑚 − 𝐹𝑐𝐿𝑙𝑖𝑚 ⋅ 𝑒−G⋅ 1−𝑆𝑜𝐶 + 𝐹𝑐𝐿𝑙𝑖𝑚

𝐹𝑐𝐿𝑙𝑖𝑚 = 0.01 𝑟𝑎𝑑/𝑠
𝐹𝑐𝐻𝑙𝑖𝑚 = 1 𝑟𝑎𝑑/𝑠

𝐺 = 3, 5, 10

Control behavior of the Low pass frequency filter vs the 
SuperCap SoC

The G parameter controls the dynamic range

of the Super-Capacity..ie when discharging,

the more the SC is charged, the more

dynamic it is 

56

RESEARCH ACTIVITIES



Designing a Long-Endurance Drone with Hydrogen Hybrid Power Sources

Simulation results for the adaptive frequency strategy

• Fixed frequency strategy with fc = 0.2 rad/s

• Adaptive frequency strategy with G = 5 and

10

• Low frequencies for FC

• High frequencies for SC

• Battery relay on power requirements during

ascent phases

• Limit SC SoC discharge to 25%.

(lower values decrease of the efficiency of the

DC/DC converter)
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Simulation results comparisons

• Comparison between fixed and variable 

frequency 

with G = 5

• 30% reduction in current variations 

required at the FC  

• SoC dynamic remains equivalent on SC 

(approx. 50%)

• 15% increase in energy transiting the SC
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T. Pavot, R. Kiefer, T. Mesbahi and E. Laroche, "Adaptive Cut-Off Frequency 

EMS Tuning Methodology Applied on a Long Range UAV Powered by a 

Hybrid Fuel-Cell System," in IEEE Transactions on Aerospace and Electronic 

Systems, December, 2025 doi: 10.1109/TAES.2025.3638319.
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